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A surface-induced transition in polymeric nematics

by PAOLO BISCARI² *, EPIFANIO G. VIRGA³

² Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milan,
Italy

³ Dipartimento di Matematica, UniversitaÁ di Napoli Federico II, Via Claudio 21,
80125 Naples, Italy

(Received 27 June 1996; in ® nal form 28 October 1996; accepted 1 November 1996 )

New polymeric liquid crystals can be treated as standard nematic liquid crystals when only
their bulk properties are at issue, but they exhibit peculiar surface properties. The most
striking one is that biaxial distributions may be induced on a con® ning surface. On
continuously varying the surface anchoring conditions, we ® nd a ® rst-order phase transition
from planar to homeotropic alignment in the bulk. Moreover, the decay towards these
uniaxial states is radically di� erent in the two cases: it is asymptotically exponential in the
former, whereas it happens abruptly at a ® nite depth in the latter. There is precisely one
surface biaxial distribution that induces bistability between these decay modes: it depends on
the elastic constants in the Landau± de Gennes free energy functional. The analysis of the
model we propose can prove useful in detecting the sign of the di� erence between splay and
bend constants.

1. Introduction We ® nd a transition too: the surface biaxiality decays
in the bulk in one of two drastically di� erent ways,A surprising result has recently been obtained by

Matoussi, Berry, and Patterson [1] through non-linear depending on the boundary conditions prescribed on
the plane delimiting a half-space. The order tensor Qoptical measurements relying on third harmonic genera-

tion made on solutions of PBZT, a nematogenic polymer. employed in Landau± de Gennes theory is symmetric
and traceless; when it has two equal eigenvalues, itThey have observed a surface biaxial layer of thickness

comparable with the wavelength of the incoming light, represents a uniaxial state with the optic axis orthogonal
to its eigenvectors with equal eigenvalues. In our modelwhich in those experiments was approximately 1 5́ and

2 0́ microns. the normal to the plane boundary is everywhere taken
as an eigenvector of Q ; a tensor subject to this constraintHere we present a mathematical model which was

essentially motivated by the observations just recalled. may represent uniaxial states with the optic axis either
It is phrased within the Landau± de Gennes formalism parallel or orthogonal to the surface, which we will refer
and it aims at describing how a biaxial surface phase to as planar and homeotropic, respectively.
can decay towards a uniaxial phase in the bulk, which It is shown below that the biaxial states prescribed
indeed minimizes the internal potential. We do not ask on the surface can be divided into two classes: from one,
ourselves how the surface induces biaxiality: we accept these states decay asymptotically according to an expo-
it as a fact, although in [2] we have already proposed nential law to a planar uniaxial state, whereas from the
a model for it, which applies to uniaxial molecules. Thus, other they reach a homeotropic uniaxial state abruptly
our work complements that of Sluckin and Poniewierski at a ® nite depth. In both cases the surface biaxial state
[3, 4], further pursued by L’vov, Hornreich, and does not persist for long in the bulk, but the two decay
Allender [5] and Kothekar, Allender, and Hornreich modes, which become bistable for a de® nite boundary
[6]. In the model studied by these authors, an anchoring condition, are quite di� erent. While the former mode
energy of variable strength is acting on the surface; could be easily anticipated, the latter one was of some
depending on the values of both the anchoring strength surprise to us: it is very reminiscent of the scenario that
and the surface temperature, they found either uniaxial Pal� y-Muhoray, Gartland, and Kelly call eigenvalue

or biaxial phases to be energetically preferred within a exchange in [7]. They studied a hybrid nematic cell,
surface layer, and they described the various possible which may become biaxial away from the bounding
transitions between them. plates, where two di� erent uniaxial states are enforced,

with the optic axes at right angles (see also [8] for a
similar study, under a simplifying assumption that made*Author for correspondence.
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420 P. Biscari and E. G. Virga

the development purely analytical ). However, what was to the value that makes it minimum. We regard this as
a constraint, while retaining the term Õ b trQ

3 in thea uniaxial defect (in the sense of [9]) right in the middle
of the cell in their situation, is here a permanent state free energy.

The minimum of funi depends on the sign of a : if a 0,extending throughout the space from the singular plane
where two eigenvalues of Q have come to a common funi attains its minimum for Q =0, which corresponds

to the isotropic phase. On the contrary, when a <0 thevalue.
In Landau± de Gennes theory, the stable equilibrium minimizer satis® es

distribution is arrived at by minimizing the free energy
functional F [Q ]) Ÿ

n
( fel (Q , VQ )+ fLdG (Q )) dv, where tr Q

2=Õ
a

c
7

2

3
s

2
0 .

V is the region in space occupied by the liquid crystal,
and fel and fLdG are, respectively, the elastic and internal Here and in the following, s0 is taken as positive; it
parts of the free energy density, which we will describe represents the degree of orientation preferred in the bulk.
in detail in § 2 below, where we also de® ne the class of Note that, by ® xing tr Q

2, we leave Q free to vary in a
distributions we consider. Further, in § 3 we study the four-dimensional manifold, where every tensor is deter-
minimizers of the free energy, and in § 4 we compare mined by one scalar and three angles, which determine
their energies and ® nd the absolute minimizer, thus both its eigenvalues and the orientation of its
arriving at the transition described above. Finally, in § 5 eigenvectors.
we present the main conclusions of this paper.

2.2. Elastic energy
2. Free energy functional We require the elastic free energy to be quadratic in

Since the minimization of the complete free energy the gradient of Q , and at most quadratic in Q . Under
functional in the whole manifold of order tensors is a these assumptions, it was proven in [13] that fel can
formidable task, in this section we will look for a simpler be expressed as fel (Q , VQ )= f 2 (VQ )+ f 3 (Q , VQ )+
class of distributions that, either by symmetry reasons f 4 (Q , VQ ), where f 3 is linear in Q , while f 4 is quadratic.
or by physical considerations, appears to be ® t to contain Explicit representations for the most general function fel
the absolute minimizer of our free energy functional. with these properties can also be found in [13], but

Here the region V is to be the half-space that in they will not be needed here.
Cartesian co-ordinates (x, y, z) is represented by z 0; The function f 2 can be written as:
furthermore, we consider only boundary conditions inde-

f 2 (VQ )= L 1 |VQ |2+ L 2 (div Q )2+ L 3 �
i jk

Q i j ,k Q ik , j ,pendent of the co-ordinate x and y : Q |z=0 =Q0=const.,
so that, as a ® rst simpli® cation, we can take into account (1)
distributions depending only on the co-ordinate z.

where a comma denotes di� erentiation with respect to
Cartesian co-ordinates, and L 1 , L 2 , and L 3 are related2.1. Internal potential
to Frank’s elastic constants through K2=4s

2
0 L 1 , K1=To further restrict this class, we focus attention on the

K3=2s
2
0 ( 2 L 1+ L 2+ L 3) . The second and third terms ininternal potential fLdG (Q ), usually de® ned as

equation (1) di� er only by a surface term, so that, when
a strong anchoring is prescribed on the boundary, f 2

fLdG(Q )) a tr Q
2 Õ b tr Q

3+
c

2
( trQ

2 )2,
introduces only two new elastic constants: namely L 1 ,

and the combination L 23) L 2+ L 3 . Actually, the second
with b, c >0. As Lyutsyukov ® rst noted [10], and order approximation to fel is unable to distinguish
Penzenstadler and Trebin then exploited [11], the para- between K1 and K3 . To overcome this problem we
meter b is usually much smaller than both |a | and c. In should consider also the higher order elastic terms, but
fact, b is responsible for the isotropic± nematic transition here the opposite problem arises: f 3 has 6 additional
being ® rst order, but most experiments show (see, e.g. constants, while f 4 has 13. To simplify the model, we
[12], § 2.3.1 and 2.3.4) that the latent heat of this must choose a criterion which selects the fewest new
transition is very small, so that the transition is only elastic constants able to separate K1 from K3 . Table 4
weakly ® rst order. of [13] collects all contributions to Frank’s constants

These considerations allow us to minimize fLdG in two from a suitable mean ® eld approximation to both f 3
steps. First we consider and f 4 . We see from it that among all 19 higher order

elastic constants, only 9 contribute di� erently to K1 than
funi (Q ))a trQ

2+
c

2
(tr Q

2 )2. to K3 : precisely, 4 contribute more to K1 than to K3 ,

whereas 5 do the opposite. To make economies, without
preferring a single term to many, we choose those in theWe suppose funi to be strong enough to ® x trQ

2 equal
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421Surface induced transition in nematic LCPs

former group, assigning one and the same value to them, Henceforth, to resolve this ambiguity, we take v as
positive.and we disregard all the others. Thus, we have

Among the distributions represented by a function u

through equations (4) and (6), only four are everywhere
uniaxial: namely, u Õ 1

2 , u 1, u Õ 1, and u
1
2 . The

former two have a positive degree of orientation and
optic axis along e1 and ez , respectively, while the latter

f 3 (Q , VQ)

=
L

s0GQ (div Q Ediv Q )+ �
i jkl

Q i j Q ik ,l Q j l ,kH ,

f 4 (Q , VQ)

=
L

s
2
0GQ

2 (div Q Ediv Q )+ �
i jklm

Q im Qm j Q ik ,l Q j l ,kH ,

two have a negative degree of orientation and optic axis
along ez and e2 , respectively.

2.4. Free energy functional
(2 ) Along the constraint in equation (6) the Landau±

de Gennes potential reduces toso that, by equation (39) of [13],

fLdG=Õ
2

9
s

2
0 bu ( 4u

2 Õ 3 ). (7 )
K1=2s

2
0 A2 L 1+ L 23 +

20

9
LB ,

As b is positive, the minimum of fLdG is Õ 2
9 s

2
0 , and it is

K2=4s
2
0 L 1 , (3 ) attained when either u =Õ 1

2 or u =1, both correspond-
ing to uniaxial states with the same (positive) degree of

K3=2s
2
0 A2 L 1+ L 23 Õ

4

9
LB , orientation, but di� erent directors. Since the volume

occupied by the liquid crystal is in® nite, we need to
whence it follows that 1

2(K1 Õ K3 )= 8
3s

2
0 L , where L need subtract this constant from the free energy density to

not be positive. make the free energy functional converge when either
u Õ 1

2 or u 1 from a point in the bulk onward
2.3. Representation of the order tensor to in® nity.

Since, on the one hand, the surface at z =0 breaks With this warning in mind, we write the free energy
the symmetry among all directions in space introducing functional, also resorting to equations (1) and (2), and
the normal ez to the bounding plate as a special direction, to the above representation of Q in terms of u :

and, on the other hand, all admissible con® gurations are
already taken to depend only on z, we further assume

F [u , Q]

F0
= P +2

0
(u ¾ 2 Õ cu( 4u

2 Õ 3 ) +c )dz

that, in those that minimize the free energy, ez is an
eigenvector of Q (z) for every z, so that we can write:

+b P +2

0 A u ¾ 2

1 Õ u
2+4Q ¾ 2( 1 Õ u

2
)B dz

Q (z)=Õ
s0

3
(u(z) Õ v (z) 3

1 /2
) e1 (z)E e1 (z)

+n P +2

0
u( 3 +2u)u ¾ 2dz, (8 )

Õ
s0

3
(u(z)+ v (z) 3

1 /2
) e2 (z)E e2 (z)+

2

3
s0u (z)ez E ez ,

where
(4)

b)
3 L 1

2 L 23
, n)

4L

9 L 23
, F0)

4

9
L 23 s

2
0 , and c )

bs0

2 L 23
.

where
( 9 )Ge1 (z) =cos Q (z)ex + sin Q (z)ey ,

e2 (z) =Õ sin Q (z)ex +cos Q (z)ey .
(5 ) The functional in equation (8) depends on both u and

Q. This latter is a function of z representing the twist of
In terms of the scalars u and v, the constraint on tr Q

2
the eigenvectors of Q , subject to the condition Q( 0 ) =Q0

can be written as: at z =0, where Q0 is the angle pertaining to the boundary
distribution Q0 . Since the equilibrium equation for Q

u
2
(z)+ v

2
(z)=1, (6 )

reads as
which gives v in terms of u , and implies u(z)×[Õ 1, 1 ]

Q ¾ ( 1 Õ u
2
) =const., (10)for all z×[0, +2) . For each u there are two values of

v satisfying equation (6) which di� er only in sign; they the free energy reduces to a functional of u only, which
with a slight abuse of language we still denote by F [u].indeed represent the same physical state, as shown by

equation (4), where a change in the sign of v has no This functional is bounded from below, provided the
function of u that multiplies u ¾ 2 in its integrand is positivee� ect on Q , provided e1 and e2 are exchanged.
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422 P. Biscari and E. G. Virga

on the interval [Õ 1, 1]; being b positive, this is the case is a material characteristic length, and
whenever n satis® es Õ 1

5 ( 1 +b ) <n< 8
9 ( 1 +b) , as can

easily be seen. These inequalities, which henceforth are z0) l log
3

1 /2
+ (2 Õ 2u0 )

1 /2

|3
1 /2

Õ (2 Õ 2u0 )
1 /2

|
(13)

taken as valid, do not represent a severe constraint, as
both depends on the boundary data. When u0<Õ 1

2 the planar
minimizer is given by:

b~
K2

K1
and |n |~

|K1 Õ K3 |

K1

are much smaller than 1 for most polymers. For the
u
d
(z)=1 Õ

3

2C1+exp A Õ
z + z0

l B
1 Õ exp A Õ

z + z0

l BD
2

, z×[0, +2) .
same reason, we will minimize the ® rst term in the
functional and treat the other two as perturbations.

(14)
3. Free energy minimizers

It should be noticed that both functions in equationsIn this section we study the minimizers of the domin-
(12) and (14) tend asymptotically to Õ 1

2 at in® nity.ant part of the free energy functional, that is minimizers
It is not easy to estimate the magnitude of l, as thereof the functional obtained from equation (8) by letting

are not very many precise measurements of the elasticb=n=0. Thus, we consider the following di� erential
constants for polymeric liquid crystals. Its approximateproblem
order of magnitude should be 0 1́ mm, as one can infer
using the data given in [14] for L 23 (see p. 177), and
taking b =6 Ö 10

4 J m Õ 3 as for MBBA. Nevertheless,q u =
3

2
c ( 1 Õ 4u

2
)

u( 0 ) =u0×[Õ 1, 1 ],

(11)
estimating l is not so crucial here, as the thickness of
the layer where the surface biaxial state appreciably
persists in the bulk, which we call the biaxial persistencewhich, as can be seen, has either one or two solutions,
length, depends also on u0 and can be considerablyas to whether u0 is smaller or greater than Õ 1

2 . In both
greater than l. The biaxial persistence length associatedcases, the order tensor Q tends to become uniaxial in
with u

d
is de® ned bythe bulk, but the two possible solutions are quite di� erent

in the resulting directors, since one is parallel to the
L
d
) K

u0

u ¾
d
( 0 ) K ; (15)bounding plate, while the other is orthogonal to it. The

dividing case u0=Õ 1
2 is singular, since for u =Õ 1

2

the potential fLdG in the free energy functional attains it follows from equations (12) and (14) that
its minimum, and so the equilibrium con® guration
u Õ 1

2 , which solves equation (11) for u0=Õ 1
2 , is L

d
=

9 |u0 |l

( 5 Õ 2u0) ( 1 Õ u0) |1 +2u0 |
. (16)

actually the absolute energy minimizer.

Figure 1 shows how L
d

depends on the boundary data u0 .

3.1. Planar energy minimizer
For every value of u0 Õ 1

2 , there is one plana r mini-
mizer for which the distribution tends to become uniaxial
in the bulk with the director in the same plane as the
bounding plate. When u0>Õ 1

2 it is given by:

u
d
(z)=1 Õ

3

2C1 Õ exp A Õ
z+ z0

l B
1+exp A Õ

z+ z0

l BD
2

, z×[0, +2) ,

(12)

where

Figure 1. Dependence on the surface state u0 of the biaxiall )A L 23

3bs0B
1 /2

persistence length L d for the planar energy minimizer ud.
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423Surface induced transition in nematic LCPs

Substituting u
d

in equations (6) and (4), we can easily
recover the three eigenvalues of the order tensor Q as
functions of z: ® gure 2 shows the result for u0=uÄ 0 , a
critical value we shall de® ne in the next section.

3.2. Homeotropic energy minimizer
When u0>Õ 1

2 , there is also a homeotropic minimizer
where the distribution becomes uniaxial with director
perpendicular to the bounding plate ( i.e. parallel to ez )
at a ® nite distance from the surface: it is described by
the function

Figure 3. Dependence on the surface state u0 of the biaxial
u)(z)=G1 Õ

3

2Cexp Az0 Õ z

l B Õ 1

exp Az0 Õ z

l B+1D
2

if z×[0, z0 ],

1 if z×[z0 , +2) ,

persistence length L) for the homeotropic energy
minimizer u).

(17)

where z0 is de® ned as in equation (13). If we now de® ne
the biaxial persistence length associated with this solu-
tion as |u0 /u ¾)( 0 ) |, we ® nd that it is indeed equal to L

d
,

so that there would be one and the same biaxial persist-
ence length for both minimizers. For the homeotropic
minimizer, however, this length can exceed z0 , thus
losing its meaning, since by equation (17), Q (z) is fully
uniaxial for z z0 . This is the case for u0×[Õ 1

2 , u
(1)
0 ],

and u0×[u
(2)
0 , 1 ], where both u

(1)
0 and u

(2)
0 are computed

numerically: u
(1)
0 =Õ 0´4505, u

(2)
0 =0´5323. Thus, we

de® ne the biaxial persistence length associated with u)
as:

Figure 4. Eigenvalues of the order tensor Q for the homeo-
tropic minimizer u).

L ))minG K u0

u ¾)( 0 ) K , z0H (18)

Figure 4 bears for u) the same information as ® gure 2
which is illustrated in ® gure 3 for u0>Õ 1

2 . does for u
d
; it also corresponds to the same value of u0

employed above. At variance with the former, the latter
exhibits two eigenvalue exchanges at a ® nite depth. First,
l1 , the largest eigenvalue at z =0, crosses lz at z=
z0 Õ l log ( 2 +3

1/2 ) : at this plane there is a uniaxial
defect, where the degree of orientation s is negative.
Second, l1 crosses l2 at the distance z= z0 from the
bounding plate. At this plate there is a uniaxial state
with a positive degree of orientation; since the internal
potential here attains its minimum, this state persists for
all z> z0 . Note that although u) is di� erentiable at z =
z0 , both l1 and l2 are not.

4. Comparing energies

Now that we have two relative minimizers, we must
compare their free energies to decide which is the stable
equilibrium con® guration. Including the corrections dueFigure 2. Eigenvalues of the order tensor Q for the planar

minimizer ud. to the perturbations generated by both the splay and
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424 P. Biscari and E. G. Virga

the higher order elastic contributions, the free energies case where the asymptotic uniaxial state in the bulk is
planar, and so u0 must make u) more energetic than u

d
.of the two minimizers are:

A glance at ® gure 1 su� ces to show that our analysis is
F [u)]

able to explain the thickness of the surface initial biaxial
layer observed in [1], though the transition predicted

)
F0

l3
1/2G ( 2 Õ 2u0 )

3/2

5
(3 +2u0 ) here still remains to be seen.

If we include the perturbations to the free energy due
to both the splay and the higher order elastic terms, the

+
b

2 A[32 ( 1 Õ u0)]
1/2+ log

3 Õ u0 Õ 2 ( 2 Õ 2u0)
1/2

1 +u0 B ® rst order transition is found to happen at u0=u
crit
0 ,

with u
crit
0 =uÄ 0+ 0´2683b+0´3405n+o (b, n) .

This critical value of u0 , that is, the value at which+
[2 ( 1 Õ u0

3
]
1/2

n

315
(140u

3
0+480u

2
0+573u0+382 )H two deeply di� erent equilibrium solutions both become

stable, could bear information about the sign of n, i.e.
F [u

d
]

about the sign of K1 Õ K3 . In fact, for most polymeric
liquid crystals not only are both b and |n | much smaller

)
F0

l G6

5
+C 2 Õ

1

2 Ö 3
1/2 log (7+4 Ö 31/2 )D b+

33

35
nH than 1, but also they satisfy b % |n |%1, so that the sign

of n coincides with the sign of u
crit
0 Õ uÄ 0 .

Õ F [u)]. (19)

To arrive at these formulae the constant appearing in 5. Conclusions
equation (10) has been set equal to zero, as required by Moving from recent new experimental evidence for a
minimizing the energy functional in equation (8). This, biaxial surface layer, we have studied the decay towards
in particular, implies that the twist of the eigenvectors a uniaxial state in the bulk. Our analysis was especially
of Q around ez is constant throughout the half-space, intended for polymeric liquid crystals, as pointed out in
provided u remains away from both Õ 1 and 1, where introducing the various approximations made here. We
Q becomes uniaxial along ez . strove to let the elastic constants in the Landau±

As above, let ® rst b=n=0. Figure 5 shows the graphs de Gennes free energy remain distinct from one another,
of both F [u

d
] and F [u)]: it is clear that, by continu- and also to let the higher order corrections to the basic

ously increasing u0 from Õ 1
2 , a ® rst order transition second order terms play a roÃ le, so that Frank’s constants

from the planar to the homeotropic con® guration occurs K1 and K3 would not coincide. The main outcome of
at the critical value uÄ 0=0´3796 which we found numeri- the paper is to predict a bulk transition driven by the
cally. This transition between such deeply di� erent equi- surface biaxial states. We were not content with describ-
librium con® gurations is ® rst order. When the boundary ing this qualitatively and have also shown how the
condition reaches its critical value, macroscopic di� erence between K1 and K3 can in¯ uence its onset.
domains, where homeotropic and planar distributions Also away from the transition, our analysis was rather
alternate, are likely to arise. telling: it showed precisely how the biaxial persistence

The observations reported in [1] clearly refer to the length, which is our estimate for the thickness of the
surface biaxial layer, would depend on both material
constants and the surface biaxial state.
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